Complexity and Improved Heuristic Algorithms for Binary Fingerprints Clustering
نویسندگان
چکیده
منابع مشابه
The Complexity and Improved Heuristic Algorithms for Binary Fingerprints Clustering
Binary fingerprints clustering is used in the classification analysis of gene expression data. It has important values in disease diagnosis. In this paper, we prove the binary fingerprints clustering problem for 2 missing values per fingerprint to be NP-Hard, and improve the Figueroa’s heuristic algorithm. The new algorithm improves the implementation method for the original algorithm. Firstly,...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کاملHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کاملList Heuristic Scheduling Algorithms for Distributed Memory Systems with Improved Time Complexity
We present a compile time list heuristic scheduling algorithm called Low Cost Critical Path algorithm (LCCP) for the distributed memory systems. LCCP has low scheduling cost for both homogeneous and heterogeneous systems. In some recent papers list heuristic scheduling algorithms keep their scheduling cost low by using a fixed size heap and a FIFO, where the heap always keeps fixed number of ta...
متن کاملEfficient and Robust Parameter Tuning for Heuristic Algorithms
The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Software
سال: 2008
ISSN: 1000-9825
DOI: 10.3724/sp.j.1001.2008.00500